Kardar-Parisi-Zhang equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall
نویسندگان
چکیده
We present an exact solution for the height distribution of KPZ equation at any time $t$ in a half space with flat initial condition. This is equivalent to obtaining free-energy polymer length pinned wall single point. In large limit binding transition takes place upon increasing attractiveness wall. Around critical point we find same statistics as Baik-Ben--Arous-P\'ech\'e outlier eigenvalues random matrix theory. bound phase, obtain measure endpoint and midpoint time. also unveil curious identities between partition functions half-space certain full Brownian-type
منابع مشابه
Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
The short-time behavior of the (1+1)-dimensional Kardar-Parisi-Zhang (KPZ) growth equation with a flat initial condition is obtained from the exact expressions for the moments of the partition function of a directed polymer with one end point free and the other fixed. From these expressions, the short-time expansions of the lowest cumulants of the KPZ height field are exactly derived. The resul...
متن کاملA Pseudo-spectral Method for the Kardar-parisi-zhang Equation
We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudo-spectral approximation of the non-linear term. The method is tested in (1 + 1)and (2 + 1)dimensions, where it is shown to reproduce the current most reliable estimates of the critical exponents b...
متن کاملExact results for the Kardar { Parisi { Zhang equation with spatiallycorrelated
Dedicated to Franz Schwabl on the occasion of his 60th birthday. Abstract. We investigate the Kardar{Parisi{Zhang (KPZ) equation in d spatial dimensions with Gaussian spatially long{range correlated noise | characterized by its second moment R(x ?x 0) / jx?x 0 j 2?d | by means of dynamic eld theory and the renormalization group. Using a stochastic Cole{Hopf transformation we derive exact expone...
متن کاملAnomaly in Numerical Integrations of the Kardar-Parisi-Zhang Equation
The Kardar-Parisi-Zhang ~KPZ! equation @1# has been very successful in describing a class of dynamic nonlinear phenomena. It is applied to a wide range of topics including vapor deposition, bacterial colony growth, directed polymers, and flux lines in superconductors @2,3#. Computational studies have mostly concentrated on simulations of discrete models such as ballistic deposition models, soli...
متن کاملStrong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation.
We study the anisotropic Kardar-Parisi-Zhang equation using nonperturbative renormalization group methods. In contrast to a previous analysis in the weak-coupling regime, we find the strong-coupling fixed point corresponding to the isotropic rough phase to be always locally stable and unaffected by the anisotropy even at noninteger dimensions. Apart from the well-known weak-coupling and the now...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physreve.104.024502